Load Flow Assignments’ Definition from Day-Ahead Electricity Market Interconnection Power Flows: A Study for Transmission Networks

Author:

Fresia Matteo1ORCID,Minetti Manuela1ORCID,Procopio Renato1ORCID,Bonfiglio Andrea1ORCID,Lisciandrello Giuseppe2,Orrù Luca2

Affiliation:

1. Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genova, Italy

2. Terna S.p.A.—Rete Elettrica Nazionale, 00156 Roma, Italy

Abstract

The mass introduction of renewable energy sources (RESs) presents numerous challenges for transmission system operators (TSOs). The Italian TSO, Terna S.p.A., aims to assess the impact of inverter-based generation on system inertia, primary regulating energy and short-circuit power for the year 2030, characterized by a large penetration of these sources. The initial working point of the Italian transmission network has to be defined through load flow (LF) calculations before starting dynamical analyses and simulations of the power system. Terna 2030 development plan projections enable the estimation of active power generation and load for each hour of that year in each Italian market zone, as well as cross-zonal active power flows; this dataset differs from conventional LF assignments. Therefore, in order to set up a LF analysis for the characterization of the working point of the Italian transmission network, LF assignments have to be derived from the input dataset provided by Terna. For this purpose, this paper presents two methods for determining canonical LF assignments for each network bus, aligning with the available data. The methodologies are applied to a simplified model of the Italian network, but they are also valid for other transmission networks with similar topology and meet the future needs of TSOs. The methods are tested at selected hours, revealing that both approaches yield satisfactory results in terms of compliance with the hourly data provided.

Funder

Terna S.p.A.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RoCoF Mitigation in the Italian Transmission Network: a Methodology for Inertia Optimization;2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON);2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3