Electric Vehicle Fleet Management for a Prosumer Building with Renewable Generation

Author:

Fresia Matteo1ORCID,Bracco Stefano1ORCID

Affiliation:

1. Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genova, Italy

Abstract

The integration of renewable energy systems in buildings leads to a reduction in energy bills for end users and a reduction in the carbon footprint of such buildings, usually referred to as prosumers. In addition, the installation of charging points for the electric vehicles of people working or living in these buildings can further improve the energy efficiency of the whole system if innovative technologies, such as vehicle-to-building (V2B) technologies, are implemented. The aim of this paper is to present an Energy Management System (EMS) based on mathematical programming that has been developed to optimally manage a prosumer building equipped with photovoltaics, a micro wind turbine and several charging points for electric vehicles. Capabilities curves of renewable power plant inverters are modelled within the EMS, as well as the possibility to apply power curtailment and V2B. The use of V2B technology reduces the amount of electricity purchased from the public grid, while the use of smart inverters for the power plants allows zero reactive power to be drawn from the grid. Levelized cost of electricity (LCOE) is used to quantify curtailment costs, while penalties on reactive power absorption from the distribution network are evaluated in accordance with the current regulatory framework. Specifically, the model is applied to a prosumer building owned by the postal service in a large city in Italy. The paper reports the main results of the study and proposes a sensitivity analysis on the number of charging stations and vehicles, as well as on the consideration of different typical days characterized by different load and generation profiles. This paper also investigates how errors in forecasting energy production from renewable sources impact the optimal operation of the whole system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. IEA (2022). Buildings, IEA.

2. (2023, June 16). Renovation Wave: Creating Green Buildings for the Future. Available online: https://europa.eu/!bG4m7p.

3. (2023, June 16). Fit for 55: Why the EU Is Toughening CO2 Emission Standards for Cars and Vans. Available online: https://europa.eu/!w39R7x.

4. A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables;Fiaschi;Appl. Energy,2012

5. Alshahrani, A., Omer, S., Su, Y., Mohamed, E., and Alotaibi, S. (2019). The technical challenges facing the integration of small-scale and large-scale PV systems into the grid: A critical review. Electronics, 8.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3