A New Cycle Slip Detection and Repair Method Using a Single Receiver’s Single Station B1 and L1 Frequencies in Ground-Based Positioning Systems

Author:

Zhao XinyangORCID,Niu Zun,Li Gaoxu,Shuai Qiangqiang,Zhu Bocheng

Abstract

The detection and repair of the cycle slip is a key step for high precision navigation and positioning in indoor environments. Different methods have been developed to detect and repair cycle slips for carrier phase processing. However, most approaches are designed to eliminate the effects of the ionosphere in an outdoor environment, and many of them use pseudorange (code) information that is no longer suitable for indoor multipath environments. In this paper, a method based on the geometry-free combination without the pseudorange data is proposed to detect and fix cycle slips. A ground-based navigation system is built for data collection. Unlike the traditional dual-frequency cycle slip detection method, the Beidou B1, GPS L1 carrier phase combination is used instead of the B1, B2, or L1, L2 carrier phase combination, Ublox is used for data collecting. For fixing the cycle slips quickly, an improved adaptive Particle Swarm Optimization (PSO) algorithm is employed. We compared the performance of the new method with the existing two methods using simulated data in different conditions. The results show that the proposed method has better performance than other methods.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ground-based high-precision local positioning using single-difference carrier phase and sparse ranging model;Third International Conference on Algorithms, Microchips, and Network Applications (AMNA 2024);2024-06-08

2. Recent Advances in Positioning Technology of GH-LPS in Challenging Environments;2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2023-09-25

3. Hydrogen-bond acidic organic compound-sensitized ionic gel for dimethyl methylphosphonate detection;Sensors and Actuators B: Chemical;2023-09

4. LSOS: An FG Position Method Based on Group Phase Ranging Ambiguity Estimation of BeiDou Pseudolite;Remote Sensing;2023-04-03

5. Reconstructed doppler cycle slip detection method based on inter satellite difference;Highlights in Science, Engineering and Technology;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3