Overviewing Drought and Heat Stress Amelioration—From Plant Responses to Microbe-Mediated Mitigation

Author:

Iqbal Saima,Iqbal Muhammad AamirORCID,Li Chunjia,Iqbal Asif,Abbas Rana Nadeem

Abstract

Microbes (e.g., plant-growth-promoting rhizobacteria, arbuscular mycorrhizal fungi and endophytes) are the natural inhabitants of the soil-plant-environment ecosystem having the potential to ameliorate the negative effects of environmental extremities. Plant-microbe interactions are integral events of agricultural ecosystems which must be studied in order to modulate the systemic mechanisms in field crops. Under changing climatic scenarios, drought and heat stresses tend to induce numerous physiological, morphological, metabolic and biochemical alterations in crop plants, while microbes hold the potential to mitigate these adverse impacts in a sustainable way. However, plant-microbe interaction mechanisms remain understudied owing to their complexities in the rhizosphere and within the cellular systems of plants. In this review, we have attempted to summarize microbes’ interactions with crop plants that tend to influence hormonal and nutrients balance, and the biosynthesis of metabolites and phytohormones, etc. In particular, focus has been kept on the underlying mechanisms related to plant-microbe interactions which confer abiotic stress tolerance. Moreover, various physiological, morphological, metabolic and biochemical responses of plants subjected to water scarcity and elevated temperatures have been synthesized objectively. Lastly, from the perspective of microbes’ application as biofertilizers, both challenges and future research needs to develop microbe-mediated tolerance as a biologically potent strategy have been strategically pointed out.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3