Ameliorating Drought Effects in Wheat Using an Exclusive or Co-Applied Rhizobacteria and ZnO Nanoparticles

Author:

Muhammad FaqeerORCID,Raza Muhammad Aown SammarORCID,Iqbal RashidORCID,Zulfiqar FaisalORCID,Aslam Muhammad Usman,Yong Jean Wan HongORCID,Altaf Muhammad Ahsan,Zulfiqar Bilal,Amin Jawad,Ibrahim Muhammad Arif

Abstract

Drought is a major abiotic factor and affects cereal-based staple food production and reliability in developing countries such as Pakistan. To ensure a sustainable and consistent food supply, holistic production plans involving the integration of several drought mitigation approaches are required. Using a randomized complete block design strategy, we examined the drought-ameliorating characteristics of plant growth-promoting rhizobacteria (PGPR) and nanoparticles (NPs) exclusively or as a combined application (T4) through three stages (D1, D2, and D3) of wheat growth (T1, control). Our field research revealed that Azospirillum brasilense alone (T2) and zinc oxide NPs (T3) improved wheat plant water relations, chlorophyll, proline, phenolics and grain quality, yield, and their allied traits over the stressed treatments. Specifically, the best outcome was observed in the combined treatment of PGPR and ZnO NPs (T4). Interestingly, the combined treatment delivered effective drought mitigation through enhanced levels of antioxidants (15% APX, 27% POD, 35% CAT, 38% PPO and 44% SOD) over controls at the grain-filling stage (GFS, D3 × T1). The 40% improvements were recorded under the combined treatment at GFS over their respective controls. Their combined usage (PGPR and ZnO NPs) was concluded as an effective strategy for building wheat resilience under drought, especially in arid and semi-arid localities.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3