Exploring Climate Sensitivity in Hydrological Model Calibration

Author:

Lee Jeonghoon1ORCID,Choi Jeonghyeon2,Seo Jiyu1,Won Jeongeun1ORCID,Kim Sangdan1ORCID

Affiliation:

1. Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea

2. Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea

Abstract

In the context of hydrological model calibration, observational data play a central role in refining and evaluating model performance and uncertainty. Among the critical factors, the length of the data records and the associated climatic conditions are paramount. While there is ample research on data record length selection, the same cannot be said for the selection of data types, particularly when it comes to choosing the climatic conditions for calibration. Conceptual hydrological models inherently simplify the representation of hydrological processes, which can lead to structural limitations, which is particularly evident under specific climatic conditions. In this study, we explore the impact of climatic conditions during the calibration period on model predictive performance and uncertainty. We categorize the inflow data from AnDong Dam and HapCheon Dam in southeastern South Korea from 2001 to 2021 into four climatic conditions (dry years, normal years, wet years, and mixed years) based on the Budyko dryness index. We then use data from periods within the same climatic category to calibrate the hydrological model. Subsequently, we analyze the model’s performance and posterior distribution under various climatic conditions during validation periods. Our findings underscore the substantial influence of the climatic conditions during the calibration period on model performance and uncertainty. We discover that when calibrating the hydrological model using data from periods with wet climatic conditions, achieving comparable predictive performance in validation periods with different climatic conditions remains challenging, even when the calibration period exhibits excellent model performance. Furthermore, when considering model parameters and predicted streamflow uncertainty, it is advantageous to calibrate the hydrological model under dry climatic conditions to achieve more robust results.

Funder

National Research Foundation of Korea

Korea Environmental Industry & Technology Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3