Multi-Parametric Analysis of Reliability and Energy Consumption in IoT: A Deep Learning Approach

Author:

Ateeq MuhammadORCID,Ishmanov Farruh,Afzal Muhammad,Naeem Muhammad

Abstract

Small-to-medium scale smart buildings are an important part of the Internet of Things (IoT). Wireless Sensor Networks (WSNs) are the major enabler for smart control in such environments. Reliability is among the key performance requirements for many loss-sensitive IoT and WSN applications, while Energy Consumption (EC) remains a primary concern in WSN design. Error-prone links, traffic intense applications, and limited physical resources make it challenging to meet these service goals—not only that these performance metrics often conflict with one another, but also require solving optimization problems, which are intrinsically NP-hard. Correctly forecasting Packet Delivery Ratio (PDR) and EC can play a significant role in different loss-sensitive application environments. With the ever-increasing availability of performance data, data-driven techniques are becoming popular in such settings. It is observed that a number of communication parameters like transmission power, packet size, etc., influence metrics like PDR and EC in diverse ways. In this work, different regression models including linear, gradient boosting, random forest, and deep learning are used for the purpose of predicting both PDR and EC based on such communication parameters. To evaluate the performance, a public dataset of the IEEE 802.15.4 network, containing measurements against more than 48,000 combinations of parameter configurations, is used. Results are evaluated using root mean square error and it turns out that deep learning achieves up to 98% accuracy for both PDR and EC predictions. These prediction results can help configure communication parameters taking into account the performance goals.

Funder

Kwangwoon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3