Quantifying Sustainability and Landscape Performance: A Smart Devices Assisted Alternative Framework

Author:

Shen Zhongzhe1ORCID,Peng Xingjian2,Du Chenlong2,Kim Mintai1

Affiliation:

1. School of Architecture and Design, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA

2. School of Business, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA

Abstract

This research investigates gaps in current methods and tools in landscape performance research and presents a smart device-assisted alternative framework for performance assessment. Against the background of increasing attention to sustainability, landscape performance has emerged as a novel research focus on sustainability, with the objective of precisely quantifying sustainable performance. However, certain shortcomings persist within this field. This research conducts a comprehensive review of pertinent literature and analyzes deeply the performance metrics and case studies cataloged by the Landscape Performance Series (LPS). Additionally, an examination of quantitative tools is undertaken by surveys. The study finds several issues in current landscape performance research: imbalance development, inconsistent methods, one-time measurement, insufficient tools, and inaccurate and unreliable quantified results. Based on the advantages of smart devices in gathering sustainable data and previous research results, this research presents an alternate framework for conducting landscape performance research, which incorporates smart devices. In addition, it presents a set of recommendations for advancing research on landscape performance. This study could contribute to improving the diversity and accuracy of landscape performance quantification and contribute to future performance research. It assists in the refinement of landscape performance research and the achievement of sustainable development goals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3