Abstract
Interferometric phase filtering is a crucial step in multibaseline interferometric synthetic aperture radar (InSAR). Current multibaseline interferometric phase filtering methods mostly follow methods of single-baseline InSAR and do not bring its data superiority into full play. The joint filtering of multibaseline InSAR based on statistics is proposed in this paper. We study and analyze the fourth-order statistical quantity of interferometric phase: kurtosis. An empirical assumption that the kurtosis of interferograms with different baselines keeps constant is proposed and is named as the baseline-invariant property of kurtosis in this paper. Some numerical experiments and rational analyses confirm its validity and universality. The noise level estimation of nature images is extended to multibaseline InSAR by dint of the baseline-invariant property of kurtosis. A filtering method based on the non-subsampled shearlet transform (NSST) and Wiener filter with estimated noise variance is proposed then. Firstly, multi-scaled and multi-directional coefficients of interferograms are obtained by NSST. Secondly, the noise variance is represented as the solution of a constrained non-convex optimization problem. A pre-thresholded Wiener filtering with estimated noise variance is employed for shrinking or zeroing NSST coefficients. Finally, the inverse NSST is utilized to obtain the filtered interferograms. Experiments on simulated and real data show that the proposed method has excellent comprehensive performance and is superior to conventional single-baseline filtering methods.
Funder
the National Key Research and Development Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献