Affiliation:
1. State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
2. Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China
Abstract
Silver ions (Ag+) exist widely in various areas of human life, and the food contamination caused by them poses a serious threat to human health. Among the numerous methods used for the detection of Ag+, fluorescence and colorimetric analysis have attracted much attention due to their inherent advantages, such as high sensitivity, simple operation, short time, low cost and visualized detection. In this work, Pd/Pt nanoflowers (NFs) specifically responsive to Ag+ were synthesized in a simple way to oxidize o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP). The interaction of Ag+ with the surface of Pd/Pt NFs inhibits the catalytic activity of Pd/Pt NFs towards the substrate OPD. A novel dual-channel nanosensor was constructed for the detection of Ag+, using the fluorescence intensity and UV-vis absorption intensity of DAP as output signals. This dual-mode analysis combines their respective advantages to significantly improve the sensitivity and accuracy of Ag+ detection. The results showed that the limit of detection was 5.8 nM for the fluorescence channel and 46.9 nM for the colorimetric channel, respectively. Moreover, the developed platform has been successfully used for the detection of Ag+ in real samples with satisfactory recoveries, which is promising for the application in the point-of-care testing of Ag+ in the field of food safety.
Funder
Project Program of Key Laboratory of Tianjin Key Laboratory of Food Quality and Health
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献