Decentralized food safety and authentication on cellulose paper‐based analytical platform: A review

Author:

Du An1ORCID,Lu Zhaoqing1ORCID,Hua Li2

Affiliation:

1. College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry Shaanxi University of Science & Technology Xi'an P. R. China

2. College of Environmental Science and Engineering Shaanxi University of Science & Technology Xi'an P. R. China

Abstract

AbstractFood safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on‐site assessments. Consequently, cellulose paper‐based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi‐mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost‐effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on‐site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3