Effect and Mechanism of Soluble Starch on Bovine Serum Albumin Cold-Set Gel Induced by Microbial Transglutaminase: A Significantly Improved Carrier for Active Substances

Author:

Shi Haoting1,Ding Changsheng1,Yuan Jianglan1ORCID

Affiliation:

1. Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China

Abstract

Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G′) of the gel increased significantly, along with the addition of SS, and gelation time was also shortened from 41 min (SS free) to 9 min (containing 4.0% SS); the microstructure also became more and more dense. The results from FTIR, fluorescence quenching and circular dichroism (CD) suggested that SS could bind to BSA to form their composites, and the hydrogen bond was probably the dominant force. Moreover, the ability of SS to bind the original free water in BSA gel was relatively strong, thereby indirectly increasing the concentration of BSA and improving the texture properties of the gel. The acceleration of gelling could also be attributed to the fact that SS reduced the negative charge of BSA aggregates and further promoted the rapid formation of the gel. The embedding efficiency (EE) of quercetin in BSA-SS cold-set gel increased from 68.3% (SS free) to 87.45% (containing 4.0% SS), and a controlled-released effect was detected by simulated gastrointestinal digestion tests. The work could put forward new insights into protein gelation accelerated by polysaccharide, and provide a candidate for the structural design of new products in the food and pharmaceutical fields.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3