Affiliation:
1. Department of Food and Nutrition, Gangseo University, Seoul 07661, Republic of Korea
2. Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
3. Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
4. Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
Abstract
Flaxseed is becoming increasingly popular as a superfood due to its many health benefits. While flaxseed is considered an oilseed, flaxseed meal (the by-product of flaxseed oil extraction) also contains many nutritional compounds not found in the oil. This study explored the use of a Canadian flaxseed (Linum usitatissimum L.) meal product to fortify bakery foods and improve their nutritional properties. Muffins were made using a control recipe as well as four different formulations that included varying amounts of a standardized flaxseed meal supplement called XanFlax (5, 10, 20, and 40%). The physicochemical properties of the muffins, including their texture, color, sugar content, pH, specific gravity, loss rate, and moisture, were evaluated. Additionally, the sensory attributes contributing to muffin quality were thoroughly examined. The lightness (L*) and yellowness (b*) of the muffins, which were highest in the control group at 82.22 and 34.69, respectively, decreased as the amount of XanFlax increased (p < 0.05). Additionally, the redness (a*) of the muffins increased as the amount of XanFlax increased (p < 0.05). The muffins’ sugar content (2.00 brix%) remained consistent across all treatments and controls except for those prepared with 20% XanFlax (2.17 brix%). As the amount of XanFlax powder increased, the pH of the muffins increased significantly. The moisture content in the muffins was highest at 23.71 ± 0.79% in the 10% XanFlax treatment and lowest at 22.06 ± 0.30% in the 40% XanFlax treatment. The muffins enriched with 5% XanFlax had an average height of 5.35 cm and volume of 131.33 mL, surpassing the results for the muffins made with other formulas (p < 0.05). Additionally, the cohesiveness and gumminess of the muffins tended to increase with the addition of XanFlax. The most favorable attributes, namely the appearance, flavor, taste, texture, and overall acceptance, were consistently associated with the 5% and 10% XanFlax treatments (p < 0.05). This study marks the first time a standardized flaxseed gum product, XanFlax, has been described in a functional baking application.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献