Effect of Yogurt Ice Cream on the Viability and Antidiabetic Potential of the Probiotics Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, and Bifidobacterium animalis subsp. lactis after In Vitro Digestion

Author:

Talearngkul Rinrada1,Sae-tan Sudathip2ORCID,Sirivarasai Jintana3ORCID

Affiliation:

1. Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand

2. Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand

3. Nutrition Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Abstract

Probiotics can ameliorate type 2 diabetes mellitus (T2DM) via several mechanisms such as by decreasing inflammatory cytokines and increasing pancreatic β-cell functions. Another targeted mechanism for managing T2DM involves inhibiting α-amylase and α-glucosidase, which exhibit antioxidant activity and affect carbohydrate metabolism by delaying carbohydrate digestion, thus mitigating glucose in the circulation. Dairy products are effective matrices for delivering probiotics through the gastrointestinal tract. We compared the viability and antioxidant activity of the probiotics Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus GG, and Bifidobacterium animalis subsp. lactis in yogurt ice cream after in vitro digestion and compared α-amylase and α-glucosidase inhibition activities. Lacticaseibacillus rhamnosus GG had the highest viability after in vitro digestion (oral, gastric, and intestinal). Lactobacillus acidophilus LA-5 and Lacticaseibacillus rhamnosus GG exhibited the highest percentages of α-glucosidase (16.37% ± 0.32%) and α-amylase (41.37% ± 0.61%) inhibition. Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5 showed the highest antioxidant activities via the α,α-diphenyl-β-picrylhydrazyl free radical-scavenging method and ferric-reducing antioxidant power assay, respectively. These findings suggest that yogurt ice cream can provide a suitable matrix for the delivery of probiotics from dairy culture to promote intestinal homeostasis with probiotic benefits in the host as well as a potential functional food to help reduce postprandial hyperglycaemia.

Funder

Nutrition Association of Thailand

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3