Electromagnetic, Air and Fat Frying of Plant Protein-Based Batter-Coated Foods

Author:

Bhuiyan Md. Hafizur Rahman1,Ngadi Michael O.1ORCID

Affiliation:

1. Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada

Abstract

There is growing consumer and food industry interest in plant protein-based foods. However, quality evolution of plant protein-based meat analog (MA) is still a rarely studied subject. In this study, wheat and rice flour-based batter systems were used to coat plant protein-based MA, and were partially fried (at 180 °C, 1 min) in canola oil, subsequently frozen (at −18 °C) and stored for 7 days. Microwave heating (MH), infrared heating (IH), air frying (AF) and deep-fat frying (DFF) processes were employed on parfried frozen MA products, and their quality evolution was investigated. Results revealed that the fat content of MH-, IH- and AF-treated products was significantly (p < 0.05) lower than DFF-treated counterparts. Batter coatings reduced fat uptake in DFF of MA-based products. Both the batter formulations and cooking methods impacted the process parameters and quality attributes (cooking loss, moisture, texture, color) of MA-based coated food products. Moreover, the post-cooking stability of moisture and textural attributes of batter-coated MA-based products was impacted by both the batter formulations and cooking methods. Glass transition temperature (Tg) of MA-based products’ crust ranged from −20.0 °C to −23.1 °C, as determined with differential scanning calorimetry. ATR-FTIR spectroscopy and scanning electron microscopy analysis revealed that surface structural–chemical evolution of MA-based products was impacted by both the coating formulations and cooking methods. Overall, AF has been found as a suitable substitute for DFF in terms of studied quality attributes of meat analog-based coated products.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3