Investigation of the Fabrication of Diamond/SiC Composites Using α-Si3N4/Si Infiltration

Author:

Xing Bo12,Zhang Yingfan2,Zhao Jinzhui2,Wang Jianyu1,Huang Guoqin12ORCID

Affiliation:

1. Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China

2. State Key Laboratory for High Performance Tools, Zhengzhou Abrasive Grinding Research Institute Co., Ltd., Zhengzhou 450001, China

Abstract

Diamond/SiC (Dia/SiC) composites possess excellent properties, such as high thermal conductivity and low thermal expansion coefficient. In addition, they are suitable as electronic packaging materials. This study mainly optimized the diamond particle size packing and liquid-phase silicon infiltration processes and investigated a method to prevent the adhesion of the product to molten silicon. Based on the Dinger–Funk particle stacking theory, a multiscale diamond ratio optimization model was established, and the volume ratio of diamond particles with sizes of D20, D50, and D90 was optimized as 1:3:6. The method of pressureless silicon infiltration and the formulas of the composites were investigated. The influences of bedding powder on phase composition and microstructure were studied using X-ray diffraction and scanning electron microscopy, and the optimal parameters were obtained. The porosity of the preform was controlled by regulating the feeding amount through constant volume molding. Dia/SiC-8 exhibited the highest density of 2.73 g/cm3 and the lowest porosity of 0.6%. To avoid adhesion between the sample and buried powder with the bedding silicon powder, a mixed powder of α-Si3N4 and silicon was used as the buried powder and the related mechanisms of action were discussed.

Funder

National Natural Science Foundation of China

Science Foundation of Fujian Province, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3