Abstract
Recently, the isolation forest (IF) methods have received increasing attention for their promising performance in hyperspectral anomaly detection (HAD). However, limited by the ability of exploiting spatial-spectral information, existing IF-based methods suffer from a lot of false alarms and disappointing performance of detecting local anomalies. To overcome the two problems, a multiscale superpixel guided discriminative forest method is proposed for HAD. First, the multiscale superpixel segmentation is employed to generate some homogeneous regions, and it can effectively extract spatial information to guide anomaly detection for the discriminative forest in local areas. Then, a novel discriminative forest (DF) model with the gain split criterion is designed, which enhances the sensitivity of the DF to local anomalies by the utilization of multi-dimension spectral bands for node division; meanwhile, the acceptable range of hyperplane attribute values is introduced to capture any unseen anomaly pixels that are out-of-range in the evaluation stage. Finally, for the high false alarm rate situation in the existing IF-based algorithms, the multiscale fusion with guided filtering is put forward to refine the initial detection results from the DF. In addition, the extensive experimental results on four real hyperspectral datasets demonstrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献