Deep Learning Classification by ResNet-18 Based on the Real Spectral Dataset from Multispectral Remote Sensing Images

Author:

Zhao YiORCID,Zhang XinchangORCID,Feng Weiming,Xu JianhuiORCID

Abstract

Owing to the limitation of spatial resolution and spectral resolution, deep learning methods are rarely used for the classification of multispectral remote sensing images based on the real spectral dataset from multispectral remote sensing images. This study explores the application of a deep learning model to the spectral classification of multispectral remote sensing images. To address the problem of the large workload with respect to selecting training samples during classification by deep learning, first, linear spectral mixture analysis and the spectral index method were applied to extract the pixels of impervious surfaces, soil, vegetation, and water. Second, through the Euclidean distance threshold method, a spectral dataset of multispectral image pixels was established. Third, a deep learning classification model, ResNet-18, was constructed to classify Landsat 8 OLI images based on pixels’ real spectral information. According to the accuracy assessment, the results show that the overall accuracy of the classification results can reach 0.9436, and the kappa coefficient can reach 0.8808. This study proposes a method that allows for the more optimized establishment of the actual spectral dataset of ground objects, addresses the limitations of difficult sample selection in deep learning classification and of spectral similarity in traditional classification methods, and applies the deep learning method to the classification of multispectral remote sensing images based on a real spectral dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3