Abstract
Among recent advances in electronic packaging technologies, electrically conductive adhesives (ECAs) attract most researchers’ attention, as they are environment-friendly and simple to apply. ECAs also have a lower operating temperature and volume resistivity compared with conventional electronic conductive adhesives. In ECAs, the conducting fillers play a significant role in improving conductivity and strength. In this work, as filler additives, the silver nanowires/graphene nanocomposites (AgNWs-GNs) were successfully fabricated via a facile self-assembly method. The characteristics of the as-prepared nanocomposites were evaluated by FTIR (Fourier Transform infrared spectroscopy), XRD (X-ray Diffraction), XPS (X-ray photoelectron spectroscopy), TEM (Transmission electron microscope) and Raman tests, demonstrating a successful synthesis process. Different amounts of AgNWs-GNs were used as additives in micron flake silver filler, and the effects of AgNWs-GNs on the properties of ECAs were studied. The results suggested that the as-synthesized composites can significantly improve the electrical conductivity and shear strength of ECAs. With 0.8% AgNWs/GNs (AgNWs to GO (Graphite oxide) mass ratio is 4:1), the ECAs have the lowest volume resistivity of 9.31 × 10−5 Ω·cm (95.4% lower than the blank sample without fillers), while with 0.6% AgNWs/GNs (AgNWs to GO mass ratio is 6:1), the ECAs reach the highest shear strength of 14.3 MPa (68.2% higher than the blank sample).
Subject
General Materials Science
Reference43 articles.
1. Research progress and trends of electronic packaging materials;Tang;J. Nanjing Univ. Technol. (Nat. Sci. Ed.),2010
2. Current Status of Research on Electronic Packaging Materials;Huang;Mater. Rev.,2000
3. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications
4. Review of Recent Advances in Electrically Conductive Adhesive Materials and Technologies in Electronic Packaging
5. The Study and Development of Electrically Conductive Adhesive;He;Chem. Adhes.,2008
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献