Armature Structure Optimization of Annular Multipole Solenoid Valves Based on Electromagnetic Force Distribution

Author:

Fan Yu123,Wang Haonan1,Xie Liangtao1ORCID,Hu Nao123,Yang Jianguo123

Affiliation:

1. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

2. National Engineering Laboratory for Marine and Ocean Engineering Power System, Electronic Control Sub-Laboratory for Low-Speed Engine, Wuhan 430063, China

3. Key Laboratory of Marine Power Engineering and Technology Granted by MOT, Wuhan 430063, China

Abstract

To improve the dynamic response speed of high-speed solenoid valves in electric fuel injection systems of marine diesel engines, a numerical simulation model of the solenoid valve is described in this paper. The accuracy of the simulation model was verified on the test bed of the solenoid valve. The effect of the punch position and the size of the dynamic response of the solenoid valve were investigated by using the distribution law of the electromagnetic force in the armature. The results of the test showed that armature drilling in the inter-yoke zone can optimize the solenoid closing response time, but it has little impact on the solenoid opening response time. From this rule, two groove schemes were further designed. Through comparison and calculation, it can be concluded that the fan groove scheme is better than the trapezoidal groove scheme, and that the opening and closing response times of the solenoid valve should be targeted in order to multi-target optimize the fan groove geometric parameters and the armature thickness. The results show that after optimization, the weight of the motion part is reduced by 21.6%, the opening response time of the solenoid valve is reduced by 11.1%, and the closing response time is reduced by 30.0%. While reducing the oil film damping of the armature motion, the overall dynamic response characteristics of the solenoid valve are improved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3