Abstract
In the landscape of Industry 4.0, advanced robotics awaits a growing use of bioinspired adaptive and flexible robots. Collaborative robotics meets this demand. Due to human–robot coexistence and interaction, the safety, the first requirement to be satisfied, also depends on the end effectors. End effectors made of soft actuators satisfy this requirement. A novel pneumatic bending soft actuator with high compliance, low cost, high versatility and easy production is here proposed. Conceived to be used as a finger of a collaborative robot, it is made of a hyper-elastic inner tube wrapped in a gauze. The bending is controlled by cuts in the gauze: the length and the angular extension of them, the pressure value and the dimensions of the inner tube determine the bending amplitude and avoid axial elongation. A design methodology, oriented to kinematically mirror the shape of the object to be grasped, was defined. Firstly, it consists of the development of a non-linear parametric numerical model of a bioinspired finger; then, the construction of a prototype for the experimental validation of the numerical model was performed. Hence, a campaign of simulations led to the definition of a qualitatively predictive formula, the basis for the design methodology. The effectiveness of the latter was evaluated for a real case: an actuator for the grasping of a light bulb was designed and experimentally tested.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献