Response Surface Methodology for Kinematic Design of Soft Pneumatic Joints: An Application to a Bio-Inspired Scorpion-Tail-Actuator

Author:

Antonelli Michele Gabrio1ORCID,Beomonte Zobel Pierluigi1ORCID,Stampone Nicola1ORCID

Affiliation:

1. Department of Industrial and Information Engineering and Economy (DIIIE), University of L’Aquila, P. le Pontieri 1, Località Monteluco, 67100 L’Aquila, Italy

Abstract

In soft robotics, the most used actuators are soft pneumatic actuators because of their simplicity, cost-effectiveness, and safety. However, pneumatic actuation is also disadvantageous because of the strong non-linearities associated with using a compressible fluid. The identification of analytical models is often complex, and finite element analyses are preferred to evaluate deformation and tension states, which are computationally onerous. Alternatively, artificial intelligence algorithms can be used to follow model-free and data-driven approaches to avoid modeling complexity. In this work, however, the response surface methodology was adopted to identify a predictive model of the bending angle for soft pneumatic joints through geometric and functional parameters. The factorial plan was scheduled based on the design of the experiment, minimizing the number of tests needed and saving materials and time. Finally, a bio-inspired application of the identified model is proposed by designing the soft joints and making an actuator that replicates the movements of the scorpion’s tail in the attack position. The model was validated with two external reinforcements to achieve the same final deformation at different feeding pressures. The average absolute errors between predicted and experimental bending angles for I and II reinforcement allowed the identified model to be verified.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3