Abstract
This study investigates the vibration reduction of tall wind-excited buildings using a tuned mass damper (TMD) with an inerter (TMDI). The performance of the TMDI is computed as a function of the floor to which the inerter is grounded as this parameter strongly influences the vibration reduction of the building and for the case when the inerter is grounded to the earth whereby the absolute acceleration of the corresponding inerter terminal is zero. Simulations are made for broadband and harmonic excitations of the first three bending modes, and the conventional TMD is used as a benchmark. It is found that the inerter performs best when grounded to the earth because, then, the inerter force is in proportion to the absolute acceleration of only the pendulum mass, but not to the relative acceleration of the two inerter terminals, which is demonstrated by the mass matrix. However, if the inerter is grounded to a floor below the pendulum mass, the TMDI only outperforms the TMD if the inerter is grounded to a floor within approximately the first third of the building’s height. For the most realistic case, where the inerter is grounded to a floor in the vicinity of the pendulum mass, the TMDI performs far worse than the classical TMD.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献