Improvement of Comfort in Suspension Seats with a Pneumatic Negative Stiffness System

Author:

Palomares EduardoORCID,Morales Angel L.ORCID,Nieto Antonio J.ORCID,Chicharro Jose M.ORCID,Pintado PublioORCID

Abstract

This paper presents a Negative Stiffness System (NSS) for vibration isolation and comfort improvement of vehicle seats, which enhances the performance of optimized traditional passive seat suspensions. The NSS is based on a set of two Pneumatic Linear Actuators (PLAs) added to a seat supported by a pneumatic spring. One end of each PLA is joined to the seat while the other end is joined to the vehicle frame. In static conditions, the PLAs remain horizontal, whereas in dynamic conditions, their vertical forces work against the pneumatic spring, reducing the overall dynamic stiffness and improving passenger comfort. The paper presents a stability analysis of the highly nonlinear dynamic system, as well as the numerical determination of the optimum PLA pressure for a given passenger mass that maximises comfort without instabilities. Finally, the performance of the proposed NSS is compared to that of a traditionally optimized passive seat suspension via simulations of an eight-degree-of-freedom vehicle model traversing several road profiles and speed bumps. Comfort improvements between 10% and 35% are found in all tests considered.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference31 articles.

1. Vibration and comfort: vertical and lateral motion in the range 0·5 to 5·0 Hz

2. Handbook of Human Vibration;Griffin,1990

3. Comparison of biodynamic responses in standing and seated human bodies;Mansfield;J. Sound Vib.,2000

4. DYNAMIC RESPONSE OF THE STANDING HUMAN BODY EXPOSED TO VERTICAL VIBRATION: INFLUENCE OF POSTURE AND VIBRATION MAGNITUDE

5. ISO-2631-1 Guide for the Evaluation of Human Exposure to Whole-Body Vibration, Part 1: General Requirements,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3