An Adaptive Fast Terminal Sliding Mode Controller of Exercise-Assisted Robotic Arm for Elbow Joint Rehabilitation Featuring Pneumatic Artificial Muscle Actuator

Author:

Nguyen Huu Tho,Trinh Van Chon,Le Thanh Danh

Abstract

Due to the time-varying nonlinear dynamic, uncertain model and hysteresis characteristics of the pneumatic artificial muscle (PAM) actuator, it is not easy to apply model-based control algorithms for monitoring, as well as controlling, the operation of systems driven by PAM actuators. Hence, the main aim of this work is to propose an intelligent controller named adaptive sliding controller adding compensator (ASC + C) to operate a robotic arm, featuring a pneumatic artificial muscle actuator, which assists rehabilitation exercise of the elbow joint function. The structure of the proposed controller is a combination between the fuzzy logic technique and Proportional Integral Derivative (PID) algorithm. In which, the input of fuzzy logic controller is the sliding surface, meanwhile, its output is the estimated value of the unknown nonlinear function, meaning that the model-based requirement is released. A PID controller works as a compensator with online learning ability and is designed to compensate because of the approximate error and hysteresis characteristic. Additionally, to improve convergence and to obtain stability, a fast terminal sliding manifold is introduced and online learning laws for parameters of the controller are attainted through the stable criterion of Lyapunov. Finally, an experimental apparatus is also fabricated to evaluate control response of the system. The experimental result confirmed strongly the ability of the proposed controller, which indicates that the ASC + C can obtain a steady state tracking error less than 5 degrees and a position response without overshoot.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference37 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3