Abstract
Interventional surgical robots are widely used in neurosurgery to improve surgeons’ working environment and surgical safety. Based on the actual operational needs of surgeons’ feedback during preliminary in vivo experiments, this paper proposed an isomorphic interactive master controller for the master–slave interventional surgical robot. The isomorphic design of the controller allows surgeons to utilize their surgical skills during remote interventional surgeries. The controller uses the catheter and guidewire as the operating handle, the same as during actual surgeries. The collaborative operational structure design and the working methods followed the clinical operational skills. The linear force feedback and torque feedback devices were designed to improve the safety of surgeries under remote operating conditions. An eccentric force compensation was conducted to achieve accurate force feedback. Several experiments were carried out, such as calibration experiments, master–slave control performance evaluation experiments, and operation comparison experiments on the novel and previously used controllers. The experimental results show that the proposed controller can perform complex operations in remote surgery applications and has the potential for further animal experiment evaluations.
Funder
National High-tech Research and Development Program
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献