Application of High-Pressure Processing (or High Hydrostatic Pressure) for the Inactivation of Human Norovirus in Korean Traditionally Preserved Raw Crab

Author:

Roy Pantu Kumar1ORCID,Jeon Eun Bi1,Kim Ji Yoon2,Park Shin Young1ORCID

Affiliation:

1. Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea

2. West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea

Abstract

Human norovirus (HuNoV) is a common cause of outbreaks linked to food. In this study, the effectiveness of a non-thermal method known as high-pressure processing (HPP) on the viable reduction of an HuNoV GII.4 strain on raw crabs was evaluated at three different pressures (200, 400, and 600 MPa). HuNoV viability in raw crabs was investigated by using propidium monoazide/sarkosyl (PMA) as a nucleic acid intercalating dye prior to performing a real-time reverse transcription-polymerase chain reaction (RT-qPCR). The effect of the HPP exposure on pH, sensory, and Hunter colors were also assessed. HuNoV was reduced in raw crabs compared with control to HPP (0.15–1.91 log) in non-PMA and (0.67–2.23 log) in PMA. HuNoV genomic titer reduction was <2 log copy number/µL) when HPP was treated for 5 min without PMA pretreatment, but it was reduced to >2 log copy number/µL after PMA. The pH and Hunter colors of the untreated and HPP-treated raw crabs were significantly different (p < 0.05), but sensory attributes were not significant. The findings indicate that PMA/RT-qPCR could be used to detect HuNoV infectivity without altering the quality of raw crabs after a 5 min treatment with HPP. Therefore, HuNoV GII.4 could be reduced up to 2.23 log in food at a commercially acceptable pressure duration of 600 MPa for 5 min.

Funder

National Research Foundation of Korea

National Institute of Fisheries Science in Korea

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3