Genetic and Transcriptome Analysis of Leaf Trichome Development in Chinese Cabbage (Brassica rapa L. subsp. pekinensis) and Molecular Marker Development

Author:

Li Jingjuan,Wang Hongxia,Zhou Dandan,Li Cheng,Ding Qian,Yang Xiaogang,Wang Fengde,Zheng Han,Gao Jianwei

Abstract

Chinese cabbage (Brassica rapa L. subsp. pekinensis) is one of the vegetables with the largest cultivated area in China and has been a great addition to the daily diet of Chinese people. A genetic map has been constructed in our previous study using the F2 population of two inbred lines of Chinese cabbage, namely “G291” (a hairy line) and “ZHB” (a hairless line), based on which a candidate gene related to trichome traits was identified on chromosome A06 with a phenotypic variance of 47%. A molecular marker was found to co-segregate with the trichome traits of the F2 population, which is in the 5′-flanking region of BrGL1, and a corresponding patent has been granted (NO. CN 108545775 B). Transcriptome analysis was carried out on the cotyledon, the first true leaf and the leaf closest to each inflorescence of F2 individuals of “G291 × ZHB” with or without trichomes, respectively. Ten pathways, including 189 DEGs, were identified to be involved in the development of trichomes in Chinese cabbage, which may be specifically related to the development of leaf trichomes. Most of the pathways were related to the biosynthesis of the secondary metabolites, which may help plants to adapt to the ever-changing external environment. DEGs also enriched the “plant-pathogen interaction” pathway, which is consistent with the conclusion that trichomes are related to the disease resistance of plants. Our study provides a basis for future research on the occurrence and development of trichomes in Chinese cabbage.

Funder

Modern Agricultural Industrial Technology System Funding of Shandong Province, China

Postdoctoral Innovation Project of Shandong Province

China Agriculture Research System

Key R&D Program of Shandong Province, China

Taishan Scholars Program of Shandong Province, China

Agricultural Science and Technology Innovation Project of SAAS

Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, Yangling, Shaanxi, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3