Transcriptional Regulation and Gene Mapping of Internode Elongation and Late Budding in the Chinese Cabbage Mutant lcc

Author:

Zhang Yunqin1,Xuan Shuxin2,Zhao Jiaojiao2,Li Hui2,Lu Yin2,Li Rui1,Wang Yanhua2,Shen Shuxing2,Sun Xiaoxue3ORCID,Feng Daling1

Affiliation:

1. State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life Science, Hebei Agricultural University, Baoding 071000, China

2. Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China

3. State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China

Abstract

Two important traits of Chinese cabbage, internode length and budding time, destroy the maintenance of rosette leaves in the vegetative growth stage and affect flowering in the reproductive growth stage. Internodes have received much attention and research in rice due to their effect on lodging resistance, but they are rarely studied in Chinese cabbage. In Chinese cabbage, internode elongation affects not only the maintenance of rosette leaves but also bolting and yield. Budding is also an important characteristic of Chinese cabbage entering reproductive growth. Although many studies have reported on flowering and bolting, studies on bud emergence and the timing of budding are scarce. In this study, the mutant lcc induced by EMS (Ethyl Methane Sulfonate) was used to study internode elongation in the seedling stage and late budding in the budding stage. By comparing the gene expression patterns of mutant lcc and wild-type A03, 2280 differentially expressed genes were identified in the seedling stage, 714 differentially expressed genes were identified in the early budding stage, and 1052 differentially expressed genes were identified in the budding stage. Here, the transcript expression patterns of genes in the plant hormone signaling and clock rhythm pathways were investigated in relation to the regulation of internode elongation and budding in Chinese cabbage. In addition, an F2 population was constructed with the mutants lcc and R500. A high-density genetic map with 1602 marker loci was created, and QTLs for internode length and budding time were identified. Specifically, five QTLs for internode length and five QTLs for budding time were obtained. According to transcriptome data analysis, the internode length candidate gene BraA02g005840.3C (PIN8) and budding time candidate genes BraA02g003870.3C (HY5-1) and BraA02g005190.3C (CHS-1) were identified. These findings provide insight into the regulation of internode length and budding time in Chinese cabbage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei

Hebei Provincial Department of Science and Technology

Science Research Project of Hebei Education Department

Publisher

MDPI AG

Reference40 articles.

1. Cabbage family affairs: The evolutionary history of Brassicaceae;Franzke;Trends Plant. Sci.,2011

2. Bahadur, B., Pullaiah, T., and Krishnamurthy, K. (2015). Plant Biology and Biotechnology, Springer.

3. Molecular basis of plant architecture;Wang;Annu. Rev. Plant. Biol.,2008

4. Taiz, L., Zeiger, E., Moller, I.M., and Murphy, A. (2014). Plant Physiology and Development, Sinauer Associates Incorporated. [6th ed.].

5. Interplay between cell growth and cell cycle in plants;Sablowski;J. Exp. Bot.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3