Synthesis and Biological Properties of Pyranocoumarin Derivatives as Potent Anti-Inflammatory Agents

Author:

Min Su Ji1,Lee Heesu2,Shin Myoung-Sook1ORCID,Lee Jae Wook34

Affiliation:

1. College of Korean Medicine, Gachon University, Seongnam-si 13120, Republic of Korea

2. Department of Anatomy, College of Dentistry, Gangneung Wonju National University (GWNU), Gangneung-si 25457, Republic of Korea

3. Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si 25451, Republic of Korea

4. Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Gangneung-si 25451, Republic of Korea

Abstract

This study aimed to synthesize 23 coumarin derivatives and analyze their anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. A cytotoxicity test performed on LPS-induced RAW264.7 macrophages revealed that none of the 23 coumarin derivatives were cytotoxic. Among the 23 coumarin derivatives, coumarin derivative 2 showed the highest anti-inflammatory activity by significantly reducing nitric oxide production in a concentration-dependent manner. Coumarin derivative 2 inhibited the production of proinflammatory cytokines, including tumor necrosis factor alpha and interleukin-6, and decreased the expression level of each mRNA. In addition, it inhibited the phosphorylation of extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase, nuclear factor kappa-B p65 (NF-κB p65), and inducible nitric oxide synthase. These results indicated that coumarin derivative 2 inhibited LPS-induced mitogen-activated protein kinase and NF-κB p65 signal transduction pathways in RAW264.7 cells, as well as proinflammatory cytokines and enzymes related to inflammatory responses, to exert anti-inflammatory effects. Coumarin derivative 2 showed potential for further development as an anti-inflammatory drug for the treatment of acute and chronic inflammatory diseases.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3