Transcriptome Analysis Reveals That Ascorbic Acid Treatment Enhances the Cold Tolerance of Tea Plants through Cell Wall Remodeling

Author:

Fu Qianyuan12,Cao Hongli23,Wang Lu1ORCID,Lei Lei1,Di Taimei1,Ye Yufan12,Ding Changqing1,Li Nana1,Hao Xinyuan1,Zeng Jianming1,Yang Yajun1,Wang Xinchao1ORCID,Ye Meng1ORCID,Huang Jianyan1ORCID

Affiliation:

1. National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

2. Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. College of Food Science, Southwest University, Chongqing 400715, China

Abstract

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid’s protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund

China Agriculture Research System of MOF and MARA

Chinese Academy of Agricultural Sciences through an Innovation Project for Agricultural Sciences and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3