Thermally Stable and Reusable Silica and Nano-Fructosome Encapsulated CalB Enzyme Particles for Rapid Enzymatic Hydrolysis and Acylation

Author:

Jang Woo Young12,Sohn Jung Hoon3ORCID,Chang Jeong Ho1

Affiliation:

1. Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea

2. Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea

3. Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

Abstract

This study reports the preparation of silica-coated and nano-fructosome encapsulated Candida antarctica lipase B particles (CalB@NF@SiO2) and a demonstration of their enzymatic hydrolysis and acylation. CalB@NF@SiO2 particles were prepared as a function of TEOS concentration (3–100 mM). Their mean particle size was 185 nm by TEM. Enzymatic hydrolysis was performed to compare catalytic efficiencies of CalB@NF and CalB@NF@SiO2. The catalytic constants (Km, Vmax, and Kcat) of CalB@NF and CalB@NF@SiO2 were calculated using the Michaelis–Menten equation and Lineweaver–Burk plot. Optimal stability of CalB@NF@SiO2 was found at pH 8 and a temperature of 35 °C. Moreover, CalB@NF@SiO2 particles were reused for seven cycles to evaluate their reusability. In addition, enzymatic synthesis of benzyl benzoate was demonstrated via an acylation reaction with benzoic anhydride. The efficiency of CalB@NF@SiO2 for converting benzoic anhydride to benzyl benzoate by the acylation reaction was 97%, indicating that benzoic anhydride was almost completely converted to benzyl benzoate. Consequently, CalB@NF@SiO2 particles are better than CalB@NF particles for enzymatic synthesis. In addition, they are reusable with high stability at optimal pH and temperature.

Funder

Cooperative Research Program for Agriculture Science and Technology Development

Rural Development Administration, Republic of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3