Fault Diagnosis of Rotating Machinery Using Kernel Neighborhood Preserving Embedding and a Modified Sparse Bayesian Classification Model

Author:

Lu Lixin1,Wang Weihao1ORCID,Kong Dongdong1,Zhu Junjiang2,Chen Dongxing1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China

2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Fault diagnosis of rotating machinery plays an important role in modern industrial machines. In this paper, a modified sparse Bayesian classification model (i.e., Standard_SBC) is utilized to construct the fault diagnosis system of rotating machinery. The features are extracted and adopted as the input of the SBC-based fault diagnosis system, and the kernel neighborhood preserving embedding (KNPE) is proposed to fuse the features. The effectiveness of the fault diagnosis system of rotating machinery based on KNPE and Standard_SBC is validated by utilizing two case studies: rolling bearing fault diagnosis and rotating shaft fault diagnosis. Experimental results show that base on the proposed KNPE, the feature fusion method shows superior performance. The accuracy of case1 and case2 is improved from 93.96% to 99.92% and 98.67% to 99.64%, respectively. To further prove the superiority of the KNPE feature fusion method, the kernel principal component analysis (KPCA) and relevance vector machine (RVM) are utilized, respectively. This study lays the foundation for the feature fusion and fault diagnosis of rotating machinery.

Funder

863 National High-Tech Research and Development Program of China

China Post-doctoral Science Foundation

Key Research and Development Program of Zhejiang Province, China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3