Convolutional Neural Network with Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis

Author:

Zhang Qing1ORCID,Wei Xiaohan2,Wang Ye2,Hou Chenggang1

Affiliation:

1. School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Bearings, as widely employed supporting components, frequently work in challenging working conditions, leading to diverse fault types. Traditional methods for diagnosing bearing faults primarily center on time–frequency analysis, but this often requires expert experience for accurate fault identification. Conversely, intelligent fault recognition and classification methods frequently lack interpretability. To address this challenge, this paper introduces a convolutional neural network with an attention mechanism method, denoted as CBAM-CNN, for bearing fault diagnosis. This approach incorporates an attention mechanism, creating a Convolutional Block Attention Module (CBAM), to enhance the fault feature extraction capability of the network in the time–frequency domain. In addition, the proposed method integrates a weight visualization module known as the Gradient-Weighted Class Activation Map (Grad-CAM), enhancing the interpretability of the convolutional neural network by generating visual heatmaps on fault time–frequency graphs. The experimental results demonstrate that utilizing the dataset employed in this study, the CBAM-CNN achieves an accuracy of 99.81%, outperforming the Base-CNN with enhanced convergence speed. Furthermore, the analysis of attention weights reveals that this method exhibits distinct focus of attention under various fault types and degrees. The interpretability experiments indicate that the CBAM module balances the weight allocation, emphasizing signal frequency distribution rather than amplitude distribution. Consequently, this mitigates the impact of the signal amplitude on the diagnostic model to some extent.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3