Abstract
A practical wind farm controller for production maximisation based on coordinated control is presented. The farm controller emphasises computational efficiency without compromising accuracy. The controller combines particle swarm optimisation (PSO) with a turbulence intensity–based Jensen wake model (TI–JM) for exploiting the benefits of either curtailing upstream turbines using coefficient of power ( C P ) or deflecting wakes by applying yaw-offsets for maximising net farm production. Firstly, TI–JM is evaluated using convention control benchmarking WindPRO and real time SCADA data from three operating wind farms. Then the optimised strategies are evaluated using simulations based on TI–JM and PSO. The innovative control strategies can optimise a medium size wind farm, Lillgrund consisting of 48 wind turbines, requiring less than 50 s for a single simulation, increasing farm efficiency up to a maximum of 6% in full wake conditions.
Funder
Commonwealth Scholarship Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference73 articles.
1. Analysis of Two Onshore Wind Farms with a Dynamic Farm Controller;Ahmad,2015
2. Assessment of the Lillgrund Windfarm: Power Performance;Dahlberg,2009
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献