Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation

Author:

Chen YanfangORCID,Joo Young HoonORCID,Song DongranORCID

Abstract

Operation optimization for large-scale offshore wind farms can cause the fatigue loads of single wind turbines to exceed their limits. This study aims to improve the economic profit of offshore wind farms by conducting multi-objective optimization via decoupled group operations of turbines. To do this, a large-scale wind farm is firstly divided into several decoupled subsets through the parallel depth-first search (PDFS) and hyperlink-induced topic search (HITS) algorithms based on the wake-based direction graph. Next, three optimization objectives are considered, including total output power, total fatigue load, and fatigue load dispatch on a single wind turbine (WT) in a wind farm. And then, the combined Monte Carlo and beetle swarm optimization (CMC-BSO) algorithms are applied to solve the multi-objective non-convex optimization problem based on the decentralized communication network topology. Finally, the simulation results demonstrate that the proposed method balances the total power output, fatigue load, and single fatigue loads with fast convergence.

Funder

National Research Foundation of Korea

Innovation-Driven Project of Central South University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3