Optimum Capacity and Placement of Storage Batteries Considering Photovoltaics

Author:

Aoyagi Hiroki,Isomura Ryota,Mandal ParasORCID,Krishna NarayananORCID,Senjyu TomonobuORCID,Takahashi Hiroshi

Abstract

In recent years, due to the enforcement of the Feed-in tariff (FIT) scheme for renewable energy, a large number of photovoltaic (PV) has been introduced, which causes fluctuations in the supply-demand balance of a power system. As measures against this, the introduction of large capacity storage batteries and demand response has been carried out, and the balance between supply and demand has been adjusted. However, since the increase in capacity of the storage battery is expensive, it is necessary to optimize the capacity of the storage battery from an economic point of view. Therefore, in the power system to which a large amount of photovoltaic power generation has been introduced, the optimal capacity and optimal arrangement of storage batteries are examined. In this paper, the determination of storage battery placement and capacity considering one year is performed by three-step simulation based on probability density function. Simulations show the effectiveness of storage batteries by considering the introduction of demand response and comparing with multiple cases.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐objective capacity estimation of wind ‐ solar ‐ energy storage in power grid planning consideration policy effect;IET Generation, Transmission & Distribution;2024-05-29

2. Multi-Objective Optimization With Multiple Load Control Strategy;2023 5th Global Power, Energy and Communication Conference (GPECOM);2023-06-14

3. Clustering Method for Load Demand to Shorten the Time of Annual Simulation;Energies;2023-02-27

4. Optimal Placement Allocation and Capacities of Storage Batteries in Future Grid;2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON);2022-12-09

5. Modeling of large-scale integration of agrivoltaic systems: Impact on the Japanese power grid;Journal of Cleaner Production;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3