Clustering Method for Load Demand to Shorten the Time of Annual Simulation

Author:

Tanigawa Yuya1,Krishnan Narayanan2ORCID,Oomine Eitaro3,Yona Atushi1,Takahashi Hiroshi4,Senjyu Tomonobu1ORCID

Affiliation:

1. Fuculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho 903-0213, Nakagami, Okinawa, Japan

2. Department of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

3. Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka-City 240-0196, Kanagawa, Japan

4. Fuji Elctric Co., Ltd., Tokyo 141-0032, Japan

Abstract

UC (unit commitment) for grid operation has been attracting increasing attention due to the growing interest in global warming. Compared to other methods, MILP, which is one of the calculation methods for UC, has the disadvantage of a long calculation time, although it is more accurate in considering constraints and in finding solutions. However, RLCs (representative load curves) require a more accurate clustering method to select representative dates because the calculation results vary greatly depending on the clustering method. DBSCAN, one of the clustering methods, has the feature that the clustering accuracy varies depending on two parameters. Therefore, this paper proposes two algorithms to automatically determine the two parameters of DBSCAN to perform RLCs using DBSCAN. In addition, since DBSCAN has the feature of being able to represent different data as two-dimensional elements, a survey of the data to be used as clustering was conducted. As a result, the proposed algorithms enabled a more accurate clustering than the conventional method. It was also proved that clustering including temperature and load demand as clustering classification factors enables clustering with higher accuracy. The simulation with shorter time was also possible for the system including storage batteries as a demand response.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3