A Combined mmWave Tracking and Classification Framework Using a Camera for Labeling and Supervised Learning

Author:

Pearce AndreORCID,Zhang J. AndrewORCID,Xu RichardORCID

Abstract

Millimeter wave (mmWave) radar poses prosperous opportunities surrounding multiple-object tracking and sensing as a unified system. One of the most challenging aspects of exploiting sensing opportunities with mmWave radar is the labeling of mmWave data so that, in turn, a respective model can be designed to achieve the desired tracking and sensing goals. The labeling of mmWave datasets usually involves a domain expert manually associating radar frames with key events of interest. This is a laborious means of labeling mmWave data. This paper presents a framework for training a mmWave radar with a camera as a means of labeling the data and supervising the radar model. The methodology presented in this paper is compared and assessed against existing frameworks that aim to achieve a similar goal. The practicality of the proposed framework is demonstrated through experimentation in varying environmental conditions. The proposed framework is applied to design a mmWave multi-object tracking system that is additionally capable of classifying individual human motion patterns, such as running, walking, and falling. The experimental findings demonstrate a reliably trained radar model that uses a camera for labeling and supervision that can consistently produce high classification accuracy across environments beyond those in which the model was trained against. The research presented in this paper provides a foundation for future research in unified tracking and sensing systems by alleviating the labeling and training challenges associated with designing a mmWave classification model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Vehicle detection based on information fusion of radar and machine vision;Automot. Eng.,2015

2. Zhou, Y., Dong, Y., Hou, F., and Wu, J. (2022). Review on Millimeter-Wave Radar and Camera Fusion Technology. Sustainability, 14.

3. Vehicle and Guard Rail Detection Using Radar and Vision Data Fusion;IEEE Trans. Intell. Transp. Syst.,2007

4. Multi-sensor information fusion technology and its applications;Infrared,2021

5. Research on Space Fusion Method of Millimeter Wave Radar and Vision Sensor;Procedia Comput. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3