Abstract
Cameras allow for highly accurate identification of targets. However, it is difficult to obtain spatial position and velocity information about a target by relying solely on images. The millimeter-wave radar (MMW radar) sensor itself easily acquires spatial position and velocity information of the target but cannot identify the shape of the target. MMW radar and camera, as two sensors with complementary strengths, have been heavily researched in intelligent transportation. This article examines and reviews domestic and international research techniques for the definition, process, and data correlation of MMW radar and camera fusion. This article describes the structure and hierarchy of MMW radar and camera fusion, it also presents its fusion process, including spatio-temporal alignment, sensor calibration, and data information correlation methods. The data fusion algorithms from MMW radar and camera are described separately from traditional fusion algorithms and deep learning based algorithms, and their advantages and disadvantages are briefly evaluated.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of Jiangsu Province
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献