A Machine Learning Study on Internal Force Characteristics of the Anti-Slide Pile Based on the DOFS-BOTDA Monitoring Technology

Author:

Wei Chaoqun,Deng Qinglu,Yin Yueming,Yan Mengyao,Lu Meng,Deng Kangqing

Abstract

Long-term monitoring of constructed anti-slide piles can help in understanding the processes by which anti-slide piles are subjected to the thrust of landslides. This paper examined the landslide control project of Badong No. 3 High School. The internal force of an anti-slide pile subjected to long-term action of landslide thrust was studied by Distributed Optical Fiber Sensing (DOFS) technology. The BP neural network was used for model training on the monitored strain values and the calculated bending moment values. The results show the following: (1) The monitoring results of the sensor fibers reflect the actual situation more accurately than steel rebar meters do and can locate the position of the sliding zone more accurately. (2) The bending moments distributed along the anti-slide pile have staged characteristics under the long-term action of landslide thrust. Three stages can be summarized according to the development trend of the bending moment values. These three stages can be divided into two change periods of landslide thrust. (3) The model produced by the BP neural network training can predict the bending moment values. In this paper, the sensing fibers monitoring over a long time interval provides a basis for long-term performance analysis of anti-slide piles and stability evaluation of landslides. Using the BP neural network for training relevant data can provide directions for future engineering monitoring. More novel methods can be devised and utilized that will be both accurate and convenient.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3