Author:
You Cheng-Rong,Chung Kao-Shen,Tsai Chih-Chien
Abstract
In this study, a dual-polarimetric radar observation operator is established and modified for the Taiwan area for the purpose of model verification. A severe squall line case during the Southwest Monsoon Experiment Intensive Observing Period 8 (SoWMEX IOP#8) on 14 June 2008, is selected and examined. Because the operator is adopted from the use of the midlatitude region, sensitivity tests are performed to obtain the optimal setting of the operator in the subtropical region. To accurately capture the dynamic structure of the squall lines, the ensemble-based data assimilation system, which assimilates both radial wind and reflectivity data, is used to obtain the optimal analysis field on the mesoscale for evaluating the performance of model simulation. The characteristics of two microphysics schemes are investigated, and the results obtained using the schemes are compared with the S-band dual-polarimetric radar observations. The horizontal and vertical cross-sections show that the analyses resemble the observations. Both schemes can replicate the polarimetric parameter signature such as ZDR and KDP columns. When comparing model simulation with polarimetric parameters through the drawing of contour frequency by altitude diagrams (CFADs), the results reveal that the single moment microphysics scheme performs better than the double moment scheme in this case. However, the reflectivity field in the stratiform area is more accurately captured when using the double moment scheme. Furthermore, validation with polarimetric variables (ZH, ZDR and KDP) histograms shows underestimation of the KDP field in both schemes. Overall, this study indicates the benefit of assimilating radial wind and reflectivity data for the analyses of severe precipitation systems and the necessity of assimilating polarimetric parameters for the accuracy of microphysical processes, especially complex microphysics schemes in subtropical region.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献