Evaluating Simulated Microphysics of Stratiform and Convective Precipitation in a Squall Line Event Using Polarimetric Radar Observations

Author:

Sun Yuting12ORCID,Zhou Zhimin1,Gao Qingjiu2ORCID,Li Hongli1,Wang Minghuan1

Affiliation:

1. China Meteorological Administration Basin Heavy Rainfall Key Laboratory, Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China

2. Key Laboratory of Meteorological Disaster (KLME), Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Recent upgrades to China’s radar network now allow for polarimetric measurements of convective systems in central China, providing an effective data set with which to evaluate the microphysics schemes employed in local squall line simulations. We compared polarimetric radar variables derived by Weather Research and Forecasting (WRF) and radar forward models and the corresponding hydrometeor species with radar observations and retrievals for a severe squall line observed over central China on 16 March 2022. Two microphysics schemes were tested and were able to accurately depict the contrast between convective and stratiform regions in terms of the drop size distribution (DSD) and reproduce the classical polarimetric signatures of the observed differential reflectivity (ZDR) and specific differential phase (KDP) columns. However, for the convective region, the simulated DSDs in both schemes exhibited lower proportions of large drops and lower liquid water content; by contrast, for the stratiform region, the proportion of large drops was found to be too high in the Morrison (MORR) scheme. The underprediction of ice-phase processes in the convective region, particularly the riming processes associated with graupel and hail, was likely responsible for the bias toward large raindrops at low levels. In the stratiform region, raindrop evaporation in the WRF Double-Moment 6-Class (WDM6) scheme, which partially offsets the overestimation of ice-phase processes, produced ground DSDs that more closely matched the observational data, and did not exhibit the overly strong warm-rain collisional growth processes of MORR.

Funder

National Natural Science Foundation of China

Joint Open Project of KLME and CIC-FEMD, NUIST

Special Program for Innovation and Development of China Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3