Detection of Large Herbivores in UAV Images: A New Method for Small Target Recognition in Large-Scale Images

Author:

Ma Jiarong,Hu Zhuowei,Shao Quanqin,Wang Yongcai,Zhou Yanqiong,Liu Jiayan,Liu ShuchaoORCID

Abstract

Algorithm design and implementation for the detection of large herbivores from low-altitude (200 m–350 m) UAV remote sensing images faces two key problems: (1) the size of a single image from the UAV is too large, and the mainstream algorithm cannot adapt to it, and (2) the number of animals in the image is very small and densely distributed, which makes the model prone to missed detection. This paper proposes the following solutions: For the problem of animal size, we optimized the Faster-RCNN algorithm in terms of three aspects: selecting a HRNet feature extraction network that is more suitable for small target detection, using K-means clustering to obtain the anchor frame size that matches the experimental object, and using NMS to eliminate detection frames that have sizes inconsistent with the size range of the detection target after the algorithm generates the target detection frames. For image size, bisection segmentation was used when training the model, and when using the model to detect the whole image, we propose the use of a new overlapping segmentation detection method. The experimental results obtained for detecting yaks, Tibetan sheep (Tibetana folia), and the Tibetan wild ass in remote sensing images of low-altitude UAV from Maduo County, the source region of the Yellow River, show that the mean average precision (mAP) and average recall (AR) of the optimized Faster-RCNN algorithm are 97.2% and 98.2%, respectively, which are 9.5% and 12.1% higher than the values obtained by the original Faster-RCNN. In addition, the results obtained from applying the new overlap segmentation method to the whole UAV image detection process also show that the new overlap segmentation method can effectively solve the problems of the detection frames not fitting the target, missing detection, and creating false alarms due to bisection segmentation.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference34 articles.

1. Unmanned Aircraft System for Surveying Large Herbivores—A Case Study in Longbao Wetland National Nature Reserve, Qinghai Province, China;Song;Master’s Thesis,2018

2. Mechanisms of Carbon Transformation in Grassland Ecosystems Affected by Grazing;Lu;Master’s Thesis,2017

3. Grassland Cover Change near the Source of the Yellow River: Case Study of Madoi County, Qinghai Province;Zhang;Resour. Sci.,2008

4. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province

5. Effects of wild large herbivore populations on the grassland-livestock balance in Maduo County;Yang;Acta Prataculturae Sin.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3