Transcriptome Analysis and Expression of Selected Cationic Amino Acid Transporters in the Liver of Broiler Chicken Fed Diets with Varying Concentrations of Lysine

Author:

Khwatenge Collins N.ORCID,Kimathi Boniface M.,Nahashon Samuel N.

Abstract

Amino acids are known to play a key role in gene expression regulation. Amino acid signaling is mediated via two pathways: the mammalian target of rapamycin complex 1 (mTORC1) and the amino acid responsive (AAR) pathways. Cationic amino acid transporters (CATs) are crucial in these pathways due to their sensing, signaling and transport functions. The availability of certain amino acids plays a key role in the intake of other amino acids, hence affecting growth in young birds. However, the specific mechanism for regulating lysine transport for growth is not clear. In this study, we analyze the transcriptome profiles and mRNA expression of selected cationic amino acid transporters in the livers of broilers fed low and high lysine diets. Birds consumed high-lysine (1.42% lysine) or low-lysine (0.85% lysine) diets while the control group consumed 1.14% lysine diet. These concentrations of lysine represent 125% (high lysine), 75% (low lysine) and 100% (control), respectively, of the National Research Council’s (NRC) recommendation for broiler chickens. After comparing the two groups, 210 differentially expressed genes (DEGs) were identified (fold change >1 and false discovery rate (FDR) <0.05). When comparing the high lysine and the low lysine treatments, there were 67 upregulated genes and 143 downregulated genes among these DEGs. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) enrichment analysis show that cellular growth, lipid metabolism and lysine metabolism pathways were among the significantly enriched pathways. This study contributes to a better understanding of the potential molecular mechanisms underlying the correlation between lysine intake, body weight gain (BWG) and feed intake (FI) in broiler chickens. Moreover, the DEGs obtained in this study may be used as potential candidate genes for further investigation of broiler growth customized responses to individualized nutrients such as amino acids.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3