Preparation and Characterization of Poly(ethylene-co-vinyl alcohol)/poly(ε-caprolactone) Blend for Bioscaffolding Applications

Author:

Alghamdi Abdulaziz Ali,Alattas Hussain,Saeed Waseem SharafORCID,Al-Odayni Abdel-BasitORCID,Alrahlah AliORCID,Aouak Taieb

Abstract

In order to improve the cell adhesion on poly(ε-caprolactone) (PCL) scaffolds, poly(ethylene-co-vinyl alcohol) (E-VAL) which has hydroxyl groups capable of developing hydrogen bonds with celling was blended with this polymer. To reach this goal, a series of E-VAL/PCL blends with different compositions were prepared by the solvent casting method. The miscibility of the polymer blend was proved by differential scanning calorimetry and Fourier-transform infrared spectroscopy spectrometry. Furthermore, the mechanical properties of the polymer blends were assessed in their wet state by dynamic mechanical analysis. The surfaces wettability of blends and their components were examined through static contact angle measurements. The pore interconnections in the resulted scaffolds were achieved by the incorporation of naphthalene microparticles which were used as porogen and then removed in its gas state by sublimation under reduced pressure. The presence of pores interconnected inside the polymeric materials and their surface morphologies was examined by scanning electron microscopy. The in-vitro cytotoxicity and cell adhesion on the prepared materials were examined by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

1. Polymer blends (or alloys);Raul;J. Macromol. Sci. Rev. Macromol. Chem.,1980

2. Economics of polymer blends

3. Polymer Blends: A Comprehensive Review;Robeson,2007

4. Nanostructured Immiscible Polymer Blends: Migration and Interface;Ray,2019

5. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3