Miniaturized Non-Contact Heating and Transmitted Light Imaging Using an Inexpensive and Modular 3D-Printed Platform for Molecular Diagnostics

Author:

Laman Alex1,Das Debayan2,Priye Aashish13ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

2. Chemical Engineering Department, NIT Durgapur, Mahatma Gandhi Rd., A-Zone, Durgapur 713209, West Bengal, India

3. Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work presents the development and characterization of a Miniaturized Optically-clear Thermal Enclosure (MOTE) system—an open-source, inexpensive, and low-powered modular system—capable of convectively heating samples while simultaneously imaging them with transmitted light. We develop and validate a computational fluid dynamics (CFD) model to design and optimize the heating chamber. The model simulates velocity and temperature profiles within the heating chamber for various chamber materials and sizes. The computational model yielded an optimal chamber dimension capable of achieving a stable temperature ranging from ambient to 95 °C with a spatial discrepancy of less than 1.5 °C, utilizing less than 8.5 W of power. The dual-functionality of the MOTE system, enabling synchronous heating and transmitted light imaging, was demonstrated through the successful execution of paper-based LAMP reactions to detect λ DNA samples in real-time down to 10 copies/µL of the target concentration. The MOTE system offers a promising and flexible platform for various applications, from molecular diagnostics to biochemical analyses, cell biology, genomics, and education.

Funder

University of Cincinnati’s Protege Program and the UC Faculty scholar research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3