A Smartphone-Enabled Continuous Flow Digital Droplet LAMP Platform for High Throughput and Inexpensive Quantitative Detection of Nucleic Acid Targets

Author:

Ditchendorf Elijah1,Ahmed Isteaque1ORCID,Sepate Joseph1,Priye Aashish12ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

2. Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

Molecular tests for infectious diseases and genetic anomalies, which account for significant global morbidity and mortality, are central to nucleic acid analysis. In this study, we present a digital droplet LAMP (ddLAMP) platform that offers a cost-effective and portable solution for such assays. Our approach integrates disposable 3D-printed droplet generator chips with a consumer smartphone equipped with a custom image analysis application for conducting ddLAMP assays, thereby eliminating the necessity for expensive and complicated photolithographic techniques, optical microscopes, or flow cytometers. Our 3D printing technique for microfluidic chips facilitates rapid chip fabrication in under 2 h, without the complications of photolithography or chip bonding. The platform’s heating mechanism incorporates low-powered miniature heating blocks with dual resistive cartridges, ensuring rapid and accurate temperature modulation in a compact form. Instrumentation is further simplified by integrating miniaturized magnification and fluorescence optics with a smartphone camera. The fluorescence quantification benefits from our previously established RGB to CIE-xyY transformation, enhancing signal dynamic range. Performance assessment of our ddLAMP system revealed a limit of detection at 10 copies/μL, spanning a dynamic range up to 104 copies/μL. Notably, experimentally determined values of the fraction of positive droplets for varying DNA concentrations aligned with the anticipated exponential trend per Poisson statistics. Our holistic ddLAMP platform, inclusive of chip production, heating, and smartphone-based droplet evaluation, provides a refined method compatible with standard laboratory environments, alleviating the challenges of traditional photolithographic methods and intricate droplet microfluidics expertise.

Funder

University of Cincinnati’s Protege Program

UC Faculty Scholar Research Award

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3