VES: A Mixed-Reality Development Platform of Navigation Systems for Blind and Visually Impaired

Author:

Real SantiagoORCID,Araujo AlvaroORCID

Abstract

Herein, we describe the Virtually Enhanced Senses (VES) system, a novel and highly configurable wireless sensor-actuator network conceived as a development and test-bench platform of navigation systems adapted for blind and visually impaired people. It allows to immerse its users into “walkable” purely virtual or mixed environments with simulated sensors and validate navigation system designs prior to prototype development. The haptic, acoustic, and proprioceptive feedback supports state-of-art sensory substitution devices (SSD). In this regard, three SSD were integrated in VES as examples, including the well-known “The vOICe”. Additionally, the data throughput, latency and packet loss of the wireless communication can be controlled to observe its impact in the provided spatial knowledge and resulting mobility and orientation performance. Finally, the system has been validated by testing a combination of two previous visual-acoustic and visual-haptic sensory substitution schemas with 23 normal-sighted subjects. The recorded data includes the output of a “gaze-tracking” utility adapted for SSD.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3