Abstract
Over the last decades, the development of navigation devices capable of guiding the blind through indoor and/or outdoor scenarios has remained a challenge. In this context, this paper’s objective is to provide an updated, holistic view of this research, in order to enable developers to exploit the different aspects of its multidisciplinary nature. To that end, previous solutions will be briefly described and analyzed from a historical perspective, from the first “Electronic Travel Aids” and early research on sensory substitution or indoor/outdoor positioning, to recent systems based on artificial vision. Thereafter, user-centered design fundamentals are addressed, including the main points of criticism of previous approaches. Finally, several technological achievements are highlighted as they could underpin future feasible designs. In line with this, smartphones and wearables with built-in cameras will then be indicated as potentially feasible options with which to support state-of-art computer vision solutions, thus allowing for both the positioning and monitoring of the user’s surrounding area. These functionalities could then be further boosted by means of remote resources, leading to cloud computing schemas or even remote sensing via urban infrastructure.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献